CHM209H The Chemistry of Molecular Gastronomy 2018

Lecture:	Wednesdays, 1-3 pm, LM155
Instructor:	Prof. D. B. Zamble LM 443 dzamble@chem.utoronto.ca
Office hours:	1 h after class, or email to schedule a meeting
TA:	Michael Lacasse michael.lacasse@mail.utoronto.ca

Course Content: In this course we will examine the chemical and physical processes that occur during cooking, and how these transformations produce different flavours and textures. We will focus on the modern practices of molecular gastronomy. Some of the chemical principles that are applied by practitioners of modernist cuisine include macromolecular structure and interactions, physical chemistry, and chemical reactivity. Lectures will include in-class demonstrations. This course is intended for students with no science background, to serve as a breadth requirement.

Grading Scheme:	Independent project					
	Topic outline (due Feb. 7)	Feb. 7)				
	Story board (due March	2)	10 %			
	Peer-to-peer critiques (due	March 9)	5 %			
	Finished story board (due	April 3)	5 %			
	Video (due April 3)		20 %			
	Mid-term (in class, Feb. 14)		15 %			
	Final exam (Exam period)		40 %			
Penalty for late course w	ork:	10 % per da	lV			
Bonus: for proven mistak	2 %	5				

Prerequisites: There are no prerequisites for this course.

Text and notes: There is no required text for this course. Lecture notes will be posted to the class Blackboard site, as well information about the in-class demonstrations and other information of interest. Make every effort to attend all lectures because it is here that the fundamental content of the course will be presented and discussed. An introductory chemistry text would be useful, a suggested text is '*Chemistry*, 7th Edition, by McMurray, Fay & Robinson, Pearson'. This book is used in our first year chemistry courses, so there are lots of copies around. Another nice reference is '*The Science of Cooking*, by Provost, Colabroy, Brenda & Wallert, Wiley'. This is available online through the utilb catalogue. Some guided assignments from this text will be recommended as practice problems.

Course Outline:

Week	<u>se Outline:</u>	Molecular Gastronomy Topic	Chemical Topics
1	Jan. 10	Introduction	Atoms & molecules
1	<i>Jun.</i> 10	Inti oduction	Covalent bonds
			 Non-covalent H-bonds
			States of matter
			Food molecule: Water
			· rood molecule. water
2	Jan. 17	Flavour Molecules	Origins of taste and smell
			 Drawing molecular structures
			Stereochemistry
			Receptors
			 Food molecules: Odorants
2	1	F	
3	Jan. 24	Emulsions	Non-covalent dipole interactions
			Hydrophobic vs hydrophilic
			• Emulsifiers and stabilizers
			• Food molecules: Fats & Oils
4	Jan. 31	Gels/Thickeners	Ionic interactions
			Polymers
			Hydrocolloids
			• Food molecules: Carbohydrates
			-
5	Feb. 7	Sous-Vide	• Energy and enthalpy
			Cooperativity
			Protein folding and stability
			• Food molecules: Proteins
6	Feb. 14	Mid-term test	In-class test (50 min)
		Acids & Bases	Chemical equilibria
			Concentration
			• Food molecules: Acids, CO ₂
7	Feb. 28	Maillard & Caramelization	Molecular reactions
	100.20	Reactions	Chemical kinetics
			 Food molecules: Amino Acids & Sugars
			rood molecules. Annio Acids & Sugars
8	March 7	Color and Foams	Valence bond theory
			 Electronic conjugation
			 Acid/ Base indicators
			 Food molecules: Minerals

9	March 14	Antioxidants	Redox reactionsFood molecules: Vitamins
10	March 21	Food Enzymes	Enzyme catalysisPhysiological roleFood molecules: Enzymes
11	March 28	Fermentation	 Microbiology Cellular metabolism Ideal gas law Food molecules: Microorganisms
12	Apr. 4	CHM209 movies	Student Videos Student choice

Turnitin: "Normally, students will be required to submit their course essays to Turnitin.com for a review of textual similarity and detection of possible plagiarism. In doing so, students will allow their essays to be included as source documents in the Turnitin.com reference database, where they will be used solely for the purpose of detecting plagiarism. The terms that apply to the University's use of the Turnitin.com service are described on the Turnitin.com web site".

Absence: If you miss a test or a significant period of class work through illness or a related reason, you should request consideration by submitting a completed University of Toronto Student Medical Certificate, which is available at the Faculty of Arts and Science web site. http://www.artsandscience.utoronto.ca/current/forms.shtml

The document must be presented within one week of the date of the absence. Only serious illness (or equivalent reason) will be accepted as justification for absence (note: the UofT Medical Certificate, filled out by your doctor, stating that you saw him/her on a given day is not adequate. Your doctor must certify that you were too sick to attend the test, etc.) The form of consideration extended for a particular item of missed term work will be explained to you when you submit the certificate.

Email Policy: For a response...

-All emails must contain a full student name and student number.

-Short questions only. Detailed questions, especially those referring to chemical structures should be saved for office hours. These are very difficult to answer over email.

All efforts will be made to return emails within 24 hrs.

Accessibility Needs

The University of Toronto is committed to accessibility. If you require accommodations for a disability, or have any accessibility concerns about the course, the classroom or course materials, please contact Accessibility Services as soon as possible:

disability.services@utoronto.ca or http://studentlife.utoronto.ca/accessibility .

																							_					
18	\mathbf{He}^{2}	4.0026	¹⁰	neon	20.180		Ar			Ϋ́		83.798(2)	54	Xe	xenon	131.29	86	Rn	radon	118	0 0	oganesson		11	LU Iutetium	174.97	103	lawrencium
		17	о Ц	fluorine	18.998	17	ច	chlorine 35.45 [35.446, 35.457]	35	Ŗ	bromine	[79.901, 79.907]	53	_	iodine	126.90	85	¥	astatine	117	Ts	tennessine		70	Y D ytterbium	173.05	102	NO nobelium
		16	∞C	0	[15.999, 16.000]			sulfur 32.06 [32.059, 32.076]		Se	selenium	78.971(8)	52	Ъ	tellurium	127.60(3)	84	Ро	polonium	116	2	livermorium		69 H	thulium B	168.93	101	mendelevium
		15	⊳ 2	nitrogen	[14.006, 14.008]	15	٩	phosphorus 30.974		As	arsenic	74.922	51	Sb	antimony	121.76	83	B	DISMUTN	115	NC NC	moscovium		89	erbium	167.26		fermium
		14	٥C	carbon	[12.009, 12.012]	14	Si	silicon 28.085 [28.084, 28.086]	32	g	germanium	72.630(8)	50	Sn	tin	118.71	82	Pb	lead	114	Ē	flerovium		67	holmium	164.93	66	einsteinium
5		13	۵ ۲	boron	[10.806, 10.821]			aluminium 26.982	31	Ga	gallium	69.723	49	<u>د</u>	indium	114.82	81	F	204.38 204.38 1204 38 204 301	113	N	nihonium		99	dysprosium	162.50	86	californium
ment								12	30	Zn	zinc	65.38(2)	48	ပီ	cadmium	112.41		Hg			- S	copernicium		65	terbium	158.93	97	berkelium
the Ele								1	29	cu	copper	63.546(3)	47	Ag	silver	107.87	79	Au	gold 1a6 a7	111	Ra	roentgenium		64	gadolinium	157.25(3)	96	Gurium
le of i								10	28	Ż	nickel	58.693	46	Pd	palladium	106.42	78	£.	platinum 195.08	110	Ds	darmstadtium		63	europium	151.96	95	
lic Tab								6	27	ပိ	cobalt	58.933	45	Rh	rhodium	102.91	17	<u>۔</u>	102 22		Mt			62		150.36(2)	94	plutonium
Perioc								80	26	Ъе	iron	55.845(2)	44	Ru	ruthenium	101.07(2)	76	SO	0Smium 190 23(3)	108	Hs	hassium		61	promethium		93	neptunium
IUPAC Periodic Table of the Elements								7	25	Mn	manganese	54.938	43	۲ ۲	technetium		75	Re	186.21	107	Bh	bohrium		60	neodymium	144.24	92	uranium
Ξ								9	24	ບັ	chromium	51.996	42	мо	molybdenum	95.95	74	3	tungsten 183.84	106	Sa	seaborgium		59	Praseodymium	140.91	⁹	protactinium
			ber	5	veight			5	23	>	vanadium	50.942	41	qN	niobium	92.906	73	Та	180 QK	105	Db	dubnium		58		140.12	06 •	thorium
		Key:	Svmbol	name	conventional atomic weight standard atomic weight			4	22	iΞ	titanium	47.867	40	Zr	zirconium	91.224(2)	72	Ŧ	178.49/2)	104	Ŗ	rutherfordium		57	La lanthanum	138.91	89	actinium
								3	21	Sc	scandium	44.956	39	≻	yttrium	88.906	57-71	lanthanoids		R0-103		actifolds					ц	MISTRY
		2	₽₽	beryllium	9.0122	12	Mg	magnesium 24.305 [24.304, 24.307]	20	Ca	calcium	40.078(4)	38	S	strontium	87.62	56	Ba	Darium	88	Ra	radium						ED CHEV
-	hydrogen	[1.0078, 1.0082]	ε	lithium	[6.938, 6.997]			22.990	19	¥	potassium	39.098	37	Rb	rubidium	85.468	55	S	Caesium 132 01	87	Ľ	francium		V				AND APPLIED CHEMISTRY
																											-	17

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry.

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

238.03

231.04

232.04